Enhancement of extraplastidic oil synthesis in Chlamydomonas reinhardtii using a type-2 diacylglycerol acyltransferase with a phosphorus starvation–inducible promoter
نویسندگان
چکیده
When cultivated under stress conditions, many plants and algae accumulate oil. The unicellular green microalga Chlamydomonas reinhardtii accumulates neutral lipids (triacylglycerols; TAGs) during nutrient stress conditions. Temporal changes in TAG levels in nitrogen (N)- and phosphorus (P)-starved cells were examined to compare the effects of nutrient depletion on TAG accumulation in C. reinhardtii. TAG accumulation and fatty acid composition were substantially changed depending on the cultivation stage before nutrient starvation. Profiles of TAG accumulation also differed between N and P starvation. Logarithmic-growth-phase cells diluted into fresh medium showed substantial TAG accumulation with both N and P deprivation. N deprivation induced formation of oil droplets concomitant with the breakdown of thylakoid membranes. In contrast, P deprivation substantially induced accumulation of oil droplets in the cytosol and maintaining thylakoid membranes. As a consequence, P limitation accumulated more TAG both per cell and per culture medium under these conditions. To enhance oil accumulation under P deprivation, we constructed a P deprivation-dependent overexpressor of a Chlamydomonas type-2 diacylglycerol acyl-CoA acyltransferase (DGTT4) using a sulphoquinovosyldiacylglycerol 2 (SQD2) promoter, which was up-regulated during P starvation. The transformant strongly enhanced TAG accumulation with a slight increase in 18 : 1 content, which is a preferred substrate of DGTT4. These results demonstrated enhanced TAG accumulation using a P starvation-inducible promoter.
منابع مشابه
Manipulation of oil synthesis in Nannochloropsis strain NIES-2145 with a phosphorus starvation–inducible promoter from Chlamydomonas reinhardtii
Microalgae accumulate triacylglycerols (TAGs) under conditions of nutrient stress. Phosphorus (P) starvation induces the accumulation of TAGs, and the cells under P starvation maintain growth through photosynthesis. We recently reported that P starvation-dependent overexpression of type-2 diacylglycerol acyl-CoA acyltransferase (CrDGTT4) from Chlamydomonas reinhardtii using a sulfoquinovosyldia...
متن کاملResponsibility of regulatory gene expression and repressed protein synthesis for triacylglycerol accumulation on sulfur-starvation in Chlamydomonas reinhardtii
Triacylglycerol (TG) synthesis is induced for energy and carbon storage in algal cells under nitrogen(N)-starved conditions, and helps prevent reactive oxygen species (ROS) production through fatty acid synthesis that consumes excessive reducing power. Here, the regulatory mechanism for the TG content in sulfur(S)-starved cells of Chlamydomonas reinhardtii was examined, in comparison to that in...
متن کاملPhospholipid:Diacylglycerol Acyltransferase Is a Multifunctional Enzyme Involved in Membrane Lipid Turnover and Degradation While Synthesizing Triacylglycerol in the Unicellular Green Microalga Chlamydomonas reinhardtii C W
Many unicellular microalgae produce large amounts (;20 to 50% of cell dry weight) of triacylglycerols (TAGs) under stress (e.g., nutrient starvation and high light), but the synthesis and physiological role of TAG are poorly understood. We present detailed genetic, biochemical, functional, and physiological analyses of phospholipid:diacylglycerol acyltransferase (PDAT) in the green microalga Ch...
متن کاملPhospholipid:diacylglycerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga Chlamydomonas reinhardtii.
Many unicellular microalgae produce large amounts (∼20 to 50% of cell dry weight) of triacylglycerols (TAGs) under stress (e.g., nutrient starvation and high light), but the synthesis and physiological role of TAG are poorly understood. We present detailed genetic, biochemical, functional, and physiological analyses of phospholipid:diacylglycerol acyltransferase (PDAT) in the green microalga Ch...
متن کاملSpecies-specific roles of sulfolipid metabolism in acclimation of photosynthetic microbes to sulfur-starvation stress
Photosynthetic organisms utilize sulfate for the synthesis of sulfur-compounds including proteins and a sulfolipid, sulfoquinovosyl diacylglycerol. Upon ambient deficiency in sulfate, cells of a green alga, Chlamydomonas reinhardtii, degrade the chloroplast membrane sulfolipid to ensure an intracellular-sulfur source for necessary protein synthesis. Here, the effects of sulfate-starvation on th...
متن کامل